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摘要 

随着社会经济的发展和城市人口的急剧增加，城市轨道交通逐步成为保证居民顺畅出行

和解决交通拥堵问题的有效手段。近年来，城市轨道交通快速发展，其运营的安全性和稳定

性成为我们必须要面对的一个课题。本课题基于复杂网络理论和图论理论，以上海地铁为主

要研究对象，并结合对台北地铁、东京地铁的相关对比研究，讨论城市轨道交通网络的拓扑

脆弱性和功能脆弱性。研究表明：城市轨道交通网络对于随机攻击具有一定鲁棒性，但是对

于最大度节点攻击和最高介数节点攻击具有很大的脆弱性；东京地铁网络具有较好的网络拓

扑结构，兼顾网络可靠性和建设成本经济性两方面的考虑，且具备较好的运输功能及 OD 连

通性。这将为城市轨道交通网络的规划和建设提供参考。 

关键词：脆弱性，城市轨道交通网络，复杂网络理论，蓄意攻击 

 

Abstract 

Compared with road transport, urban rail transit networks, such as metros, light rail and 

regional railways have provided superior performance. Nevertheless, the security and stability 

operations become a topic that we have to face. In this paper, topological and functional 

vulnerability of urban rail transit networks are analyzed based on complex network theory and 

graph theory. Urban rail transit networks are constructed and several basic parameters are 

proposed to investigate general characteristics of rail transit networks. Shanghai Metro is taken as 

the study object to explore the vulnerability of a typical urban rail transit network. Vulnerabilities 

of different urban rail transit networks, namely Shanghai Metro, Taibei Metro and Tokyo Metro 

are compared to explore the most reliable network geometry. It is shown in the paper that urban 

rail transit network is quite robust to random attacks, but it is vulnerable to the largest degree 

node-based attacks and the highest betweenness node-based attacks. Tokyo Metro is not only 
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robust for critical-station attacks, but also more economical in constructing other less critical 

stations than Shanghai Metro and Taibei Metro. It possesses the best transport ability under 

malicious attacks among the three metros and is much more robust to the largest degree 

node-based attacks in OD connectivity. This research could provide both theoretical significance 

and practical significance to the study of rail transit networks. 

Key words: vulnerability, urban rail transit network, complex network theory, malicious 

attacks 

 

 

1 Introduction 

1.1 Background 

In recent years, cities are expanding with a rapid increase in population. 

Traditional public transport and private vehicles have posed serious problems on city 

roads, such as congestions and pollution, etc. Compared with road transport, urban 

rail transit networks, such as metros, light rail and regional railways have provided 

superior performance. Nevertheless, the security and stability operations become a 

topic that we have to face. Network failures, outburst of passenger flows, natural 

disasters and terrorist activities may cause breakdown of stations or lines, which 

would affect the overall efficiency of the rail networks. Only in Shanghai, for example, 

on October 27th 2007, power failures led to the breakdown of three subway lines; on 

December 22th 2009, a power blackout of Line 1 direct resulted in a two-train crash; 

on September 27th 2011, a rear-end accident on Line 10 happened between Yuyuan 

Garden and Laoximen stations; more commonly, on September 14th 2013, water 

intrusion caused the signal failure of Line 2 and a large number of passengers were 

stranded at the stations. Compared with road network accidents, rail accidents not 

only cause traffic delays of the incident line, but also have a wider impact on other 

stations of the system, which generate a greater social impact. 

1.2 Literature review 

Urban rail transit network has a history of more than 150 years; therefore, 

traditional literatures are abundant. Musso and Vuchic 
[1]

 notably investigated the 

geometric characteristics of metro networks. Their research defined the most 

important measures, indicators, and characteristics of geometric forms which 

improved the empirical methods used in metro network planning and analysis. More 

recently, Zhang and Zhao 
[2]

 comprehensively introduced the major urban rail transit 

systems in the world, which provided basic information for the rail transit network 

planning and construction. Vuchic 
[3]

 systematically introduced the metro network 

operations, planning and economics. Topics such as transit line capacity, rail transit 
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station location, transit system planning, transit fare, etc. were all covered in the book. 

In recent 10 years, graph theory and complex network theory have been applied 

to the urban rail transit networks, but research from this specific approach remained 

relatively limited. Latora and Marchiori 
[4]

 gave insights on the general characteristics 

of real transportation networks and notably identified the small-world features in the 

Boston subway network. Seaton and Hackett 
[5]

 calculated the clustering coefficient, 

path length and average vertex degree of the Boston and Vienna networks, and 

investigated the effect of architecture on the small-world properties. Vragović et al. 
[6]

 

measured and compared the network efficiencies of Madrid, Barcelona and Boston 

subway networks and categorized these systems as declustered networks. Angeloudis 

and Fisk 
[7]

 defined the subway systems as complex networks and analyzed 20 

networks constructed from the world’s largest subways. They discovered that the 

urban rail transit networks possessed the characteristics of high connectivity but low 

maximum vertex degree. Lee et al.
 [8]

 analyzed statistical properties and topological 

consequences of the rail transit network system, and further studied the passenger 

flows on the system. Raveau et al.
 [9]

 presented a route choice model for public transit 

networks that incorporated variables related to network topology. This study 

significantly improved the explanatory and predictive ability of existing route choice 

specifications.  

According to the above mentioned literatures, the urban rail transit network is a 

very complex system; therefore, much attention has been paid to the prevention of 

network failures and system disruptions so far. Zhao 
[10]

 studied the operational safety 

and reliability of urban mass transit system. Beroggi (2000) provided an integrated 

approach to develop a safety concept for underground systems. Canós and Zulueta 
[11]

 

applied hypermedia technology to improve safety in underground metropolitan 

transportation and to reduce emergency response time. Xu et al.
 [12]

 designed and 

implemented an emergency management system of urban rail transit network based 

on workflow modeling.  

Network science has also been applied to the analysis of reliability and safety of 

the urban rail transit networks. Santiago del Río et al.
 [13]

 analyzed the resilience 

capabilities of underground systems and calculated the amount of backup capacity 

required to recover from system failures. Derrible and Kennedy
 [14]

 introduced 

robustness indicators corresponding to the characteristics of transit systems by 

looking at 33 metro systems in the world. They provided recommendations for 

increasing the robustness of different-sized metro networks. De-Los-Santos et al. 
[15]

 

provided passenger robustness measures for the rail transit network under 

without-bridging and with-bridging interruptions. They verified the measures on the 

Madrid commuter system. Cadarso et al. 
[16]

 studied the disruption management 

problem of rapid transit rail networks. They proposed a two-step approach that 

combined an integrated optimization model for the timetable and rolling stock with a 
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model for the passengers’ behavior.  

It is worth mentioning that while the concepts of reliability, resilience and 

robustness are closely related to the general subject of vulnerability 
[17]

, these 

neighboring terms are different in research scopes. Vulnerability in transport is more a 

characteristic of the system itself, and concerns more about the consequences and 

probabilities of system failures 
[18]

. Therefore, the above mentioned literatures 

constitute a tool for addressing vulnerability related problems, but they did not 

directly look into the issue of vulnerability.  

Currently, vulnerability analysis of urban rail transit networks mainly referred to 

the research achievements in road network systems 
[19-20]

. Gao 
[21]

 proposed an 

evaluating model of metro network invulnerability on the basis of network topology 

and calculated the evaluating indices with matrix logic. Wang 
[22]

 constructed the 

topological model of Beijing transit network and simulated the network efficiency 

under attacks. Zhang et al. 
[23]

 measured the topological characteristics and functional 

properties of Shanghai subway network. This research indicated that the subway 

network was robust against random attacks but fragile to intentional attacks. Ye 
[24] 

applied the same methodology to study the topological characteristics of Chongqing 

rail transit network and evaluated the vulnerabilities of every station under attacks. 

Nevertheless, these studies simplified the urban rail transit networks with graph 

theory and therefore, lacked considerations of properties that are characteristic of rail 

transit systems, such as the ability to transfer, etc.  

Several other approaches to the vulnerability analysis were employed by scholars. 

Quan et al. 
[25]

 established an index system to assess the vulnerability of rainstorm 

water-logging in Shanghai subway. Han et al. 
[26]

 analyzed the urban mass transit 

accident from three aspect, including interference, exposure and vulnerability. They 

regarded vulnerability as the inherent defects of the system and established a safety 

insurance mechanism based on this theory. Yuan et al. 
[27]

 studied the statistical data of 

metro network accidents and proposed the concepts of physical, structural and social 

vulnerabilities of metro system. These studies, however, lacked systematical analysis 

of urban rail transit networks operation, which may hinder the usefulness to public 

transportation planners and practitioners. 

2 Application of Complex Network Theory 

2.1 Complex network theory 

Complex network is defined as network model whose vertices are the elements 

of the system and whose edges represent the interactions between them 
[28]

. Many 

systems could be defined as complex networks, such as Internet and social networks. 

According to Angeloudis and Fisk’ 
[7]

 study of 20 world’s largest subways, urban rail 

transit networks could also be depicted as complex networks. They possess the 

characteristics of high connectivity but low maximum vertex degree, and could be 
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grouped as small-world, scale-free networks. 

2.2 Construction of urban rail transit networks 

Normally, network topology could be constructed with the following two 

methods: (1) Space L method, with which vertices are connected only if they are 

adjacent; (2) Space P method, with which vertices are connected as long as they have 

direct path to reach each other. 

 
Figure2-1 Network Construction Methods 

Stations and traffic lines are the basic components in urban rail transit networks. 

With Space L method, stations could be abstracted into nodes of complex networks 

while traffic lines could be abstracted into edges that connect nodes. As urban metro 

is two-way traffic, the rail transit network could be viewed as an undirected 

graph G = 〈𝑉, 𝐸〉. In the network, V = {𝑣𝑖|𝑖 = 1,2,3 … 𝑁} is the set of network nodes, 

and E = {𝑒𝑖𝑗|𝑣𝑖 , 𝑣𝑗 ∈ 𝑉} is the set of network edges. A = [𝑎𝑖𝑗]𝑛×𝑛 is the network 

adjacent matrix, in which 𝑎𝑖𝑗 is defined as: 

𝑎𝑖𝑗 = {
1, (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0, (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸
                                            (2.1) 

Also, as the rail transit network is an undirected graph, we have 𝑒𝑖𝑗 ∈ 𝐸 ⇔ 𝑒𝑗𝑖 ∈

𝐸, which means that the network adjacent matrix A is a symmetric non-negative 

matrix. 

2.3 Topological index 

Topological parameters are the basic tools to study network characteristics in 

complex network theory. Therefore, we define and explain here several topological 

indexes which would be used in our later analysis of network vulnerability. 

Commonly speaking, main topological parameters of complex networks include 

degree, average degree, betweenness, average betweenness, shortest path, average 

shortest path length, topological efficiency, clustering coefficient, etc. 

2.3.1 Degree 

Degree (Di) is defined as the number of edges that connected with node vi. It 

reveals the connectivity of the node. Therefore, Average Degree (AD) of the network 

is defined as: 
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AD =
1

𝑁
∑ 𝐷𝑖

𝑁
𝑖=1                                                  (2.2) 

where N is the number of nodes in the network. 

2.3.2 Connectivity Factor 

Connectivity Factor (CF) is defined as: 

CF =
1

𝑁
∑ 𝑒𝑖𝑗𝑣𝑖,𝑣𝑗∈𝑉                                               (2.3) 

It reveals the overall connectivity of the network. 

2.3.3 Betweenness 

Betweenness (Bi) is defined as the number of times that the shortest paths 

between any two nodes in the network go through node vi. The shortest path between 

two nodes is the minimum number of edges between them. Betweenness reveals the 

importance of the node in the transmission of information. Therefore, Average 

Betweenness (AB) of the network is defined as: 

AB =
1

𝑁
∑ 𝐵𝑖

𝑁
𝑖=1                                                  (2.4) 

2.3.4 The Shortest Path 

The Shortest Path (lij) between two nodes vi and vj is the minimum number of 

edges between them. It depicts the transit efficiency between the two. In another word, 

the smaller lij is, the more efficient of information transmission between vi and vj 

would be. Therefore, Average Shortest Paths (ASP) of the network is defined as: 

ASP =
1

𝑁(𝑁−1)
∑ 𝑙𝑖𝑗𝑣𝑖,𝑣𝑗∈𝑉                                          (2.5) 

As defined in Equation (2.5), if the network is non-connected, and vi and vj 

belong to different isolated networks, we have 𝑙𝑖𝑗 = ∞ and also ASP = ∞. 

2.3.5 Topological Efficiency 

When network is non-connected, the shortest path defined above could not be 

used to depict network transmission efficiency any more. To avoid such problem, 

Topological Efficiency (E) is proposed and defined as: 

E =
1

𝑁(𝑁−1)
∑

1

𝑙𝑖𝑗
𝑣𝑖,𝑣𝑗∈𝑉                                             (2.6) 

It depicts the overall connectivity of the network and at the same time, avoids the 

problem in Equation (2.5). When the network consists of several non-connected 

sub-networks, and vi and vj belongs to different sub-networks, we have 𝑙𝑖𝑗 = ∞ and 

also 1/𝑙𝑖𝑗 = 0. 

2.3.6 Clustering Coefficient 

If Vi is the set of adjacent nodes of node vi, we could define Clustering 

Coefficient (Ci) of vi as: 

𝐶𝑖 =
2|𝐸𝑖|

𝑁𝑖(𝑁𝑖−1)
                                                   (2.7) 

where Ni=|Vi| is the number of elements in set Vi and 

E𝑖 = {𝑒𝑖𝑗|(𝑣𝑖, 𝑣𝑗) ∈ 𝐸 ∧ 𝑣𝑗 ∈ 𝑉𝑖} . It depicts the clustering ability of the node. 

Therefore, Average Clustering Coefficient (AC) of the network is defined as: 



城市轨道交通网络脆弱性分析（Vulnerability Analysis of Urban Rail Transit Networks） 

上海交通大学 SJTU 7 

AC =
1

𝑁
∑ 𝐶𝑖

𝑁
𝑖=1 =

1

𝑁
∑

2|𝐸𝑖|

𝑁𝑖(𝑁𝑖−1)

𝑁
𝑖=1                                    (2.8) 

It could reveal the aggregation degree of the network, but it does not represent 

the overall connectivity of the whole network. 

Among the above mentioned indexes, degree depicts network connectivity while 

betweenness depicts network pressure. The average shortest path between any two 

nodes in the network depicts network transit efficiency. Topological efficiency is 

based on the calculation of the shortest path and is the best parameters to depict 

overall connectivity of network. Clustering coefficient depicts connectivity of node, 

but it is not accurate to depict the overall connectivity of the network. 

3 Network Vulnerability Model 

Vulnerability in traffic area is defined as “a susceptibility to incidents that can 

result in considerable reductions in network serviceability”. 
[18]

 It involves two parts 

generally: (1) the probability that an event would happen and cause negative impacts, 

and (2) the negative consequences once the event has taken place. In vulnerability 

studies, negative impact minimization is an important aspect as it is often hard to 

predict the probabilities of certain events, such as terrorist actions and extreme 

weathers, etc. Therefore, it is necessary to be expected possible consequences and be 

prepared.  

3.1 Network malfunctions 

To better study the vulnerability of urban rail transit networks, we firstly discuss 

network malfunctions. Network malfunctions could be grouped into two types: 

internal and external. Internal malfunctions are caused by system errors, such as 

system aging, internal disturbances, etc. External malfunctions are caused by external 

factors, such as natural disasters, malicious attacks, etc. There are two types of 

malicious attacks: node-based and edge-based. In this paper, we mainly study the 

node-based attacks and group such attacks into three types: the largest degree 

node-based attacks, the highest betweenness node-based attacks and random attacks. 

(1) The largest degree node-based attacks: starting from the initial state, to delete 

the node with the largest degree in each step and re-calculate the network status. In 

this way, nodes are deleted one by one. 

(2) The highest betweenness node-based attacks: starting from the initial state, to 

delete the node with the highest betweenness in each step and re-calculate the network 

status. Similar to Rule (1), nodes are also deleted one by one. 

(3) Random attacks: starting from the initial state, to delete a node in the network 

randomly in each step and re-calculate the network status. Just as in Rule (1) and Rule 

(2), nodes are deleted one by one. 

3.2 Evaluation model 
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We study the urban rail transit networks from two sides: topological vulnerability 

and functional vulnerability. 

Topological Vulnerability is defined as the network susceptibility to incidents 

that could result in a reduction in structure connectivity. Several parameters could be 

applied to depict the overall efficiency and connectivity of the network, such as 

Connectivity Factor, Topological Efficiency and the Average Shortest Path. Among 

these parameters, we use Topological Efficiency to evaluate network topological 

vulnerability. 

As defined in Equation (2.6), Topological Efficiency E =
1

𝑁(𝑁−1)
∑

1

𝑙𝑖𝑗
𝑣𝑖,𝑣𝑗∈𝑉 . It 

depicts the overall connectivity of the network. With a higher value of E, we could 

have a more efficient network information transmission. 

When node vi is attacked and removed from the network, the value of E would 

change as well. Therefore, we define the topological efficiency of vi [E(vi)] as: 

E(𝑣𝑖) = E(O) − E(𝑣′
𝑖)                                           (3.1) 

where E(O) is the original topological efficiency of the network and E(v’i) is the 

network topological efficiency after vi being attacked. The higher value of E(vi) is, the 

greater impact vi would have on network efficiency. In another word, vi is more 

critical to topological reliability. 

Functional Vulnerability is defined as the network susceptibility to incidents that 

could result in a reduction in transport ability. We suppose that each node in the 

network possesses the initial functional ability of 1. If a node is removed from the 

network (attacked or isolated), its functional ability reduced to 0. Based on this 

definition, we could therefore use network size to evaluate network functional 

vulnerability. 

When network is attacked, the attacked node would be removed from the 

network. Meanwhile, it would cause some isolated nodes in the network, which would 

also be deleted. Therefore, we define Network Size as the total number of remaining 

nodes in the network. 

To better analyze network transport ability, we also define and use the concept of 

Origin-Destination (OD) in urban rail transit networks. When node vi is attacked, 

several ODs in the network would become unconnected. Therefore, we define OD 

Susceptibility of vi [S(vi)] as: 

S(𝑣𝑖) = 1 −
|𝑆(𝑣′

𝑖)|

|𝑆(𝑂)|
                                             (3.2) 

where |S(O)| is the number of OD in the original network and |S(v’i)| is the 

number of remaining connected OD after vi being attacked. It reveals the importance 

of node vi in maintaining network functional properties. 

Some previous literatures also use Largest Connected Cluster (LCC) 
[23]

 to 

evaluate functional vulnerability of urban rail transit networks. LCC is defined as the 

network size of the largest sub-network after the network being attacked. However, 
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this parameter is not suitable to evaluate urban rail transit networks as trains could 

still operate in each sub-network even if the network is attacked and divided into 

several isolated sub-networks.  

4 Vulnerability Analysis of Shanghai Metro 

4.1 Basic network information 

 
Figure4-1 Shanghai Metro Route Map 

In this section, Shanghai Metro is studied based on the above vulnerability model. 

Figure4-1 presents the route map of Shanghai Metro. As can be seen from the figure, 

Shanghai Metro is a very complicated transport system with 14 lines (Line1-13 and 

Line16) in operation. The network topology is constructed and basic parameter 

information is obtained with C++ and Matlab. Table4-1 presents the summary of 

Shanghai Metro topological characteristics. Currently, there are 287 nodes and 317 

edges in the network. The average degree is 2.2, which is at the average level among 

urban rail transit networks in major cities around the world. Figure4-2 presents the 

degree distribution of Shanghai Metro network. The nodes with degree 2 take up 

approximately 80% of the total number while the nodes with degree 4 take up 

approximately 9%. There is only 1 node with degree 8 and 2 nodes with degree 6 and 

5 respectively, which means that the nodes with large degree are very few in 

quantities. 

Table4-1 Characteristics Index of Shanghai Metro 

Characteristics Index Value 

Node No. 287 

Edge No. 317 
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Average Degree 2.2 

Connectivity Factor 1.105 

 
Figure4-2 Degree Distribution of Shanghai Metro 

Table4-2 presents the top 10 important stations of Shanghai Metro based on node 

degree and node betweenness respectively. Century Avenue is the node with the 

largest degree of 8. It means that the station is connected with other 8 stations in the 

network. Xujiahui possesses the largest node betweenness of 23624. It means that 

there are overall 23624 shortest paths in the network go through Xujiahui station. It is 

also worth noticing that the two rankings are quite different from each other. Some 

stations, such as Caoyang Road, Zhenping Road and Jiangsu Road, which are of node 

degree 4, possess higher node betweenness than Century Avenue and People’s Square. 

Table4-2 Top10 Important Stations of Shanghai Metro 

Station Ranking based on Node Degree Station Ranking based on Node Betweenness 

No. Di Station No. Bi Station 

1 8 Century Avenue 1 23624 Xujiahui 

2 6 Xujiahui 2 20104 Caoyang Road 

3 6 People's Square 3 18232 Zhenping Road 

4 5 Oriental Sports Center 4 17306 Jiangsu Road 

5 5 Yishan Road 5 17264 Century Avenue 

6 4 South Shaanxi Road 6 17222 Shanghai Railway Station 

7 4 Changshu Road 7 16448 Jiaotong University 

8 4 Shanghai Railway Station 8 15218 Hailun Road 

9 4 Shanghai Indoor Stadium 9 14804 People's Square 

10 4 Zhaojiabang Road 10 14120 Baoshan Road 

4.2 Topological vulnerability analysis of Shanghai Metro 

Figure4-3 depicts the changes in network efficiency of Shanghai Metro under 

malicious attacks. The original network efficiency is only 0.008. It means that the 

overall connectivity of the network is poor. As can be seen from the figure, random 

attacks cause the minimal losses in network efficiency among the three malicious 
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attacks. When 10% of nodes (29 nodes) are attacked and removed from the network, 

the network efficiency decrease by only 14%. However, both of the largest degree 

node-based attacks and the highest betweenness node-based attacks cause great losses 

in network efficiency. When 10% of nodes are deleted from the network, the network 

efficiencies decrease by 37% and 34% respectively. There is little difference in these 

two ways of attacks. It means that stations with high node betweenness are of same 

influence on network efficiency as stations with large node degree. These stations 

may not be important in common sense, but they have great impact on maintaining 

network connectivity. This figure also illustrates that urban rail transit networks are 

vulnerable to the largest degree node-based attacks and the highest betweenness 

node-based attacks, but it is quite robust to random attacks. 

 
Figure4-3 Network Efficiency of Shanghai Metro under Malicious Attacks 

4.3 Functional vulnerability analysis of Shanghai Metro 

Figure4-4 depicts the changes in network size of Shanghai Metro under 

malicious attacks. The largest degree node-based attacks cause the maximum losses in 

network size among the three malicious attacks. When 20% of nodes (58 nodes) are 

attacked and removed from the network, the network size decrease by 39%. Apart 

from the 58 attacked nodes, it also causes 54 isolated nodes in the network. This 

figure illustrates that the stations with large node degree are important to maintaining 

network transport ability. These stations are also critical to other stations in the 

network.  
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Figure4-4 Network Size of Shanghai Metro under Malicious Attacks 

Figure4-5 depicts the changes in connected OD ratio of Shanghai Metro under 

malicious attacks. As can be seen from the figure, malicious attacks have a great 

impact on OD connectivity. When the top 7 stations with the highest betweenness are 

attacked, the connected OD ratio decreases to only 29%. Moreover, when 10% of 

nodes (29 nodes) are attacked and removed from the network, the connected OD ratio 

decrease to approximately 2% under both of the largest degree node-based attacks and 

the highest betweenness node-based attacks. Only 760 OD pairs are still connected 

out of 41041 original pairs and the network is paralyzed. This figure illustrates that 

OD connectivity is vulnerable to malicious attacks.  

 
Figure4-5 Connected OD Ratio of Shanghai Metro under Malicious Attacks 

5 Comparisons of Different Urban Rail Transit Networks 

5.1 Basic network information 

To better understand and explore reliable network geometry, we would study and 
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compare the vulnerabilities of different urban rail transit networks, namely Shanghai 

Metro, Taibei Metro and Tokyo Metro in this section. Figure5-1 and Figure5-2 

presents the route map of Taibei Metro and Tokyo Metro respectively. As can be seen 

from these two figures, Taibei Metro has a simple structure while Tokyo Metro is a 

super complicated system. 

 
Figure5-1 Taibei Metro Route Map 

 
Figure5-2 Tokyo Metro Route Map 

Table5-1 presents the comparison of basic topological characteristics of the three 

metros. Shanghai Metro possesses the maximum number of nodes while Taibei Metro 
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has only 101 nodes in total. However, Tokyo Metro possesses the highest average 

degree and connectivity factor than the other two. It means that Tokyo Metro enjoys 

the best overall network connectivity. Figure5-3 presents the degree distributions of 

the three metros. Different from Shanghai Metro and Taibei Metro, the nodes with 

degree 2 take up only 70% of the total number in Tokyo Metro. Instead, there are 

more nodes with large degree in Tokyo Metro with 5 nodes of degree 6 and 10 nodes 

of degree 5. It reveals the better connectivity of Tokyo Metro. 

Table5-1 Characteristics Index of the Three Metros 

Characteristics Index Shanghai Tokyo Taibei 

Node No. 287 204 101 

Edge No. 317 256 105 

Average Degree 2.2 2.5 2.1 

Connectivity Factor 1.105 1.255 1.040 

 
Figure5-3 Degree Distributions of the Three Metros 

5.2 Topological vulnerability analysis 

Figure5-4, Figure5-5 and Figure5-6 depict the changes in network efficiency of 

the three metros under malicious attacks. As can be seen from Figure5-4, under the 

largest degree node-based attacks, when less than 10% of the nodes are attacked and 

removed from the networks, the changes in network efficiencies are similar to Tokyo 

Metro and Shanghai Metro. It means that the critical nodes (nodes with large degree) 

in these two metros possess similar robustness to malicious attacks. However, when 

20% of the nodes (57 nodes in Shanghai Metro and 41 nodes in Tokyo Metro) are 

attacked and removed from the networks, the network efficiencies decrease by 55% 

and 60% respectively for Shanghai Metro and Tokyo Metro. The attacks in Tokyo 

metro cause a greater loss in network efficiency. In another word, these less critical 

nodes (nodes with degree 2 or 3) in Tokyo Metro account for higher network 

efficiencies than those in Shanghai Metro. It reveals that Tokyo Metro is not only 

robust for critical-station attacks, but also more economical in constructing other less 
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critical stations. Similar conclusions could be reached from Figure5-5 and Figure5-6 

when Tokyo Metro and Shanghai Metro are compared. Taibei Metro is not taken into 

considerations here as generally speaking, network efficiency is relevant with total 

node number in the network and makes it hard to compare a simple network (Taibei 

Metro) with complicated ones (Shanghai Metro and Tokyo Metro). 

 
Figure5-4 Network Efficiency under the Largest Degree Node-based Attacks 

 
Figure5-5 Network Efficiency under the Highest Betweenness Node-based Attacks 
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Figure5-6 Network Efficiency under Random Attacks 

5.3 Functional vulnerability analysis 

Figure5-7, Figure5-8 and Figure5-9 depict the changes in network size of the 

three metros under malicious attacks. For all the three metros, the largest degree 

node-based attacks cause the maximum losses in network size among the three 

malicious attacks. Therefore, we put our emphasis on the study of the largest degree 

node-based attacks. As can be seen from Figure5-7, when less than 10% of the nodes 

are attacked and removed from the networks, the changes in network sizes are similar 

to the three metros. However, when more than 10% of the nodes are attacked, the 

changes in network size of Tokyo Metro are obviously smaller than the changes in 

Shanghai Metro and Taibei Metro. It means that the attacks cause fewer ratios of 

isolated nodes in Tokyo Metro than the other two. In another word, Tokyo Metro 

possesses the best transport ability under malicious attacks among the three metros. 

 

Figure5-7 Network Size under the Largest Degree Node-based Attacks 
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Figure5-8 Network Size under the Highest Betweenness Node-based Attacks 

 

Figure5-9 Network Size under Random Attacks 

Figure5-10, Figure5-11 and Figure5-12 depict the changes in connected OD ratio 

of the three metros under malicious attacks. Different from Shanghai Metro and 

Taibei Metro, Tokyo Metro is much more robust to the largest degree node-based 

attacks. When 8% of nodes (16 nodes) are attacked and removed from the network, 

there are still 45% of OD pairs connected in Tokyo Metro. 9345 OD pairs are 

connected out of 20706 original pairs. The ratio is much higher than that of Shanghai 

Metro and Taibei Metro. However, the OD connectivity of Tokyo Metro is as 

vulnerable as that of Shanghai Metro and Taibei Metro under the highest betweenness 

node-based attacks. When 8% of nodes (16 nodes) are attacked and removed from the 

network, the connected OD ratio decrease to only 9% in Tokyo Metro. It reveals that 

stations with high node betweenness are more critical to OD connectivity than stations 

with large degree, and therefore need to be protected. 
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Figure5-10 Connected OD Ratio under the Largest Degree Node-based Attacks 

 

Figure5-11 Connected OD Ratio under the Highest Betweenness Node-based Attacks 

 

Figure5-12 Connected OD Ratio under Random Attacks 
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6 Conclusions 

Based on the above analysis, we could reach the following conclusions: 

(1) Urban rail transit network is quite robust to random attacks, but it is 

vulnerable to the largest degree node-based attacks and the highest betweenness 

node-based attacks. 

(2) Stations with high node betweenness are of same influence on network 

efficiency as stations with large node degree. These stations may not be important in 

common sense, but they have great impact on maintaining network connectivity.  

(3) Stations with large node degree are more important to maintaining network 

size while stations with high node betweenness are more critical to maintaining OD 

connectivity. 

(4) Tokyo Metro is not only robust for critical-station attacks, but also more 

economical in constructing other less critical stations. It possesses the best transport 

ability under malicious attacks among the three metros and is much more robust to the 

largest degree node-based attacks in OD connectivity. 

These conclusions can provide both theoretical significance and practical 

significance to the study of rail transit networks. Critical stations could be identified 

in the network and be better protected. Tokyo Metro could be taken as a model for the 

construction of urban rail transit networks around the world. In the meanwhile of 

guaranteeing network reliability, it also provides ideas on reducing construction costs. 

However, there are still some problems existing in current vulnerability model. 

To traffic users (metro passengers), interchange times is an important factor which 

would affect their route choices, but the above mentioned evaluation indexes are hard 

to depict transfer efficiency. In the next step of our research, the time required to 

transfer as well as the passengers psychological habits would be quantified in the 

model. As large passenger flow would add pressure to the network system and 

increase the probability of breakdown, traffic volume would also be quantified in the 

model. 
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