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Abstract

Compared with road transport, urban rail transit networks, such as metros, light rail and
regional railways have provided superior performance. Nevertheless, the security and stability
operations become a topic that we have to face. In this paper, topological and functional
vulnerability of urban rail transit networks are analyzed based on complex network theory and
graph theory. Urban rail transit networks are constructed and several basic parameters are
proposed to investigate general characteristics of rail transit networks. Shanghai Metro is taken as
the study object to explore the vulnerability of a typical urban rail transit network. Vulnerabilities
of different urban rail transit networks, namely Shanghai Metro, Taibei Metro and Tokyo Metro
are compared to explore the most reliable network geometry. It is shown in the paper that urban
rail transit network is quite robust to random attacks, but it is vulnerable to the largest degree

node-based attacks and the highest betweenness node-based attacks. Tokyo Metro is not only
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robust for critical-station attacks, but also more economical in constructing other less critical
stations than Shanghai Metro and Taibei Metro. It possesses the best transport ability under
malicious attacks among the three metros and is much more robust to the largest degree
node-based attacks in OD connectivity. This research could provide both theoretical significance
and practical significance to the study of rail transit networks.

Key words: vulnerability, urban rail transit network, complex network theory, malicious

attacks

1 Introduction
1.1 Background

In recent years, cities are expanding with a rapid increase in population.
Traditional public transport and private vehicles have posed serious problems on city
roads, such as congestions and pollution, etc. Compared with road transport, urban
rail transit networks, such as metros, light rail and regional railways have provided
superior performance. Nevertheless, the security and stability operations become a
topic that we have to face. Network failures, outburst of passenger flows, natural
disasters and terrorist activities may cause breakdown of stations or lines, which
would affect the overall efficiency of the rail networks. Only in Shanghai, for example,
on October 27th 2007, power failures led to the breakdown of three subway lines; on
December 22th 2009, a power blackout of Line 1 direct resulted in a two-train crash;
on September 27th 2011, a rear-end accident on Line 10 happened between Yuyuan
Garden and Laoximen stations; more commonly, on September 14th 2013, water
intrusion caused the signal failure of Line 2 and a large number of passengers were
stranded at the stations. Compared with road network accidents, rail accidents not
only cause traffic delays of the incident line, but also have a wider impact on other
stations of the system, which generate a greater social impact.

1.2 Literature review

Urban rail transit network has a history of more than 150 years; therefore,
traditional literatures are abundant. Musso and Vuchic ™ notably investigated the
geometric characteristics of metro networks. Their research defined the most
important measures, indicators, and characteristics of geometric forms which
improved the empirical methods used in metro network planning and analysis. More
recently, Zhang and Zhao ¥ comprehensively introduced the major urban rail transit
systems in the world, which provided basic information for the rail transit network
planning and construction. Vuchic ¥ systematically introduced the metro network
operations, planning and economics. Topics such as transit line capacity, rail transit
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station location, transit system planning, transit fare, etc. were all covered in the book.

In recent 10 years, graph theory and complex network theory have been applied
to the urban rail transit networks, but research from this specific approach remained
relatively limited. Latora and Marchiori [ gave insights on the general characteristics
of real transportation networks and notably identified the small-world features in the
Boston subway network. Seaton and Hackett ! calculated the clustering coefficient,
path length and average vertex degree of the Boston and Vienna networks, and
investigated the effect of architecture on the small-world properties. Vragovié et al. !
measured and compared the network efficiencies of Madrid, Barcelona and Boston
subway networks and categorized these systems as declustered networks. Angeloudis
and Fisk ! defined the subway systems as complex networks and analyzed 20
networks constructed from the world’s largest subways. They discovered that the
urban rail transit networks possessed the characteristics of high connectivity but low
maximum vertex degree. Lee et al. ©® analyzed statistical properties and topological
consequences of the rail transit network system, and further studied the passenger
flows on the system. Raveau et al. ! presented a route choice model for public transit
networks that incorporated variables related to network topology. This study
significantly improved the explanatory and predictive ability of existing route choice
specifications.

According to the above mentioned literatures, the urban rail transit network is a
very complex system; therefore, much attention has been paid to the prevention of
network failures and system disruptions so far. Zhao ™ studied the operational safety
and reliability of urban mass transit system. Beroggi (2000) provided an integrated
approach to develop a safety concept for underground systems. Canés and Zulueta ™
applied hypermedia technology to improve safety in underground metropolitan
transportation and to reduce emergency response time. Xu et al. 2 designed and
implemented an emergency management system of urban rail transit network based
on workflow modeling.

Network science has also been applied to the analysis of reliability and safety of
the urban rail transit networks. Santiago del R® et al. ™! analyzed the resilience
capabilities of underground systems and calculated the amount of backup capacity
required to recover from system failures. Derrible and Kennedy ™ introduced
robustness indicators corresponding to the characteristics of transit systems by
looking at 33 metro systems in the world. They provided recommendations for
increasing the robustness of different-sized metro networks. De-Los-Santos et al. [**!
provided passenger robustness measures for the rail transit network under
without-bridging and with-bridging interruptions. They verified the measures on the
Madrid commuter system. Cadarso et al. *® studied the disruption management
problem of rapid transit rail networks. They proposed a two-step approach that
combined an integrated optimization model for the timetable and rolling stock with a
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model for the passengers’ behavior.

It is worth mentioning that while the concepts of reliability, resilience and
robustness are closely related to the general subject of vulnerability “7, these
neighboring terms are different in research scopes. Vulnerability in transport is more a
characteristic of the system itself, and concerns more about the consequences and
probabilities of system failures 8. Therefore, the above mentioned literatures
constitute a tool for addressing vulnerability related problems, but they did not
directly look into the issue of vulnerability.

Currently, vulnerability analysis of urban rail transit networks mainly referred to
the research achievements in road network systems % Gao Y1 proposed an
evaluating model of metro network invulnerability on the basis of network topology
and calculated the evaluating indices with matrix logic. Wang @ constructed the
topological model of Beijing transit network and simulated the network efficiency
under attacks. Zhang et al. ) measured the topological characteristics and functional
properties of Shanghai subway network. This research indicated that the subway
network was robust against random attacks but fragile to intentional attacks. Ye 24
applied the same methodology to study the topological characteristics of Chongging
rail transit network and evaluated the vulnerabilities of every station under attacks.
Nevertheless, these studies simplified the urban rail transit networks with graph
theory and therefore, lacked considerations of properties that are characteristic of rail
transit systems, such as the ability to transfer, etc.

Several other approaches to the vulnerability analysis were employed by scholars.
Quan et al. ! established an index system to assess the vulnerability of rainstorm
water-logging in Shanghai subway. Han et al. ) analyzed the urban mass transit
accident from three aspect, including interference, exposure and vulnerability. They
regarded vulnerability as the inherent defects of the system and established a safety
insurance mechanism based on this theory. Yuan et al. * studied the statistical data of
metro network accidents and proposed the concepts of physical, structural and social
vulnerabilities of metro system. These studies, however, lacked systematical analysis
of urban rail transit networks operation, which may hinder the usefulness to public
transportation planners and practitioners.

2 Application of Complex Network Theory
2.1 Complex network theory

Complex network is defined as network model whose vertices are the elements
of the system and whose edges represent the interactions between them 8. Many
systems could be defined as complex networks, such as Internet and social networks.
According to Angeloudis and Fisk’ 1"
transit networks could also be depicted as complex networks. They possess the

characteristics of high connectivity but low maximum vertex degree, and could be

study of 20 world’s largest subways, urban rail
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grouped as small-world, scale-free networks.

2.2 Construction of urban rail transit networks

Normally, network topology could be constructed with the following two
methods: (1) Space L method, with which vertices are connected only if they are
adjacent; (2) Space P method, with which vertices are connected as long as they have
direct path to reach each other.
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Line B Line B
(a) Space L. (b) Space P
Figure2-1 Network Construction Methods

Stations and traffic lines are the basic components in urban rail transit networks.
With Space L method, stations could be abstracted into nodes of complex networks
while traffic lines could be abstracted into edges that connect nodes. As urban metro
is two-way traffic, the rail transit network could be viewed as an undirected
graph G = (V, E). In the network, V = {v;|i = 1,2,3 ... N} is the set of network nodes,
and E = {e;;|v;, v; € V} is the set of network edges. A = [a;;]nxn iS the network
adjacent matrix, in which a;; is defined as:

1, (vi, vj) EE

ajj =

{O, (vi,vj) ¢ E

Also, as the rail transit network is an undirected graph, we have e;; € E < ej; €

(2.1)

E, which means that the network adjacent matrix A is a symmetric non-negative
matrix.

2.3 Topological index

Topological parameters are the basic tools to study network characteristics in
complex network theory. Therefore, we define and explain here several topological
indexes which would be used in our later analysis of network vulnerability.
Commonly speaking, main topological parameters of complex networks include
degree, average degree, betweenness, average betweenness, shortest path, average
shortest path length, topological efficiency, clustering coefficient, etc.

2.3.1 Degree

Degree (Dj) is defined as the number of edges that connected with node v;. It
reveals the connectivity of the node. Therefore, Average Degree (AD) of the network
is defined as:
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1
AD = ~¥, D; (2.2)
where N is the number of nodes in the network.
2.3.2 Connectivity Factor

Connectivity Factor (CF) is defined as:

CF = %Zvi,vjev eij (2.3)

It reveals the overall connectivity of the network.

2.3.3 Betweenness

Betweenness (B;) is defined as the number of times that the shortest paths
between any two nodes in the network go through node v;. The shortest path between
two nodes is the minimum number of edges between them. Betweenness reveals the
importance of the node in the transmission of information. Therefore, Average
Betweenness (AB) of the network is defined as:

AB =—3¥, B; (2.4)

2.3.4 The Shortest Path

The Shortest Path (lj;) between two nodes v; and v; is the minimum number of
edges between them. It depicts the transit efficiency between the two. In another word,

the smaller Ij; is, the more efficient of information transmission between v; and v;

would be. Therefore, Average Shortest Paths (ASP) of the network is defined as:

1
ASP = _Zvi,vjev ll] (25)

N(N-1)
As defined in Equation (2.5), if the network is non-connected, and v; and v;
belong to different isolated networks, we have [;; = o and also ASP = co.
2.3.5 Topological Efficiency
When network is non-connected, the shortest path defined above could not be
used to depict network transmission efficiency any more. To avoid such problem,
Topological Efficiency (E) is proposed and defined as:

1

Ty (26)

It depicts the overall connectivity of the network and at the same time, avoids the
problem in Equation (2.5). When the network consists of several non-connected
sub-networks, and v; and v; belongs to different sub-networks, we have [;; = oo and
also 1/1;; = 0.

2.3.6 Clustering Coefficient

If V; is the set of adjacent nodes of node vi, we could define Clustering

Coefficient (C;) of v; as:
_ __2|Ei|
E7 NN
where  N;=|V;| is the number of elements in set V; and
E; = {e;;|(vi,v)) EEAv; €V;}. It depicts the clustering ability of the node.
Therefore, Average Clustering Coefficient (AC) of the network is defined as:

2.7)
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_ 1 _ 2|Ej|
AC= 33N, €= I, s (28)

It could reveal the aggregation degree of the network, but it does not represent
the overall connectivity of the whole network.

Among the above mentioned indexes, degree depicts network connectivity while
betweenness depicts network pressure. The average shortest path between any two
nodes in the network depicts network transit efficiency. Topological efficiency is
based on the calculation of the shortest path and is the best parameters to depict
overall connectivity of network. Clustering coefficient depicts connectivity of node,
but it is not accurate to depict the overall connectivity of the network.

3 Network Vulnerability Model

Vulnerability in traffic area is defined as “a susceptibility to incidents that can
result in considerable reductions in network serviceability”. (18] 1t involves two parts
generally: (1) the probability that an event would happen and cause negative impacts,
and (2) the negative consequences once the event has taken place. In vulnerability
studies, negative impact minimization is an important aspect as it is often hard to
predict the probabilities of certain events, such as terrorist actions and extreme
weathers, etc. Therefore, it is necessary to be expected possible consequences and be
prepared.

3.1 Network malfunctions

To better study the vulnerability of urban rail transit networks, we firstly discuss
network malfunctions. Network malfunctions could be grouped into two types:
internal and external. Internal malfunctions are caused by system errors, such as
system aging, internal disturbances, etc. External malfunctions are caused by external
factors, such as natural disasters, malicious attacks, etc. There are two types of
malicious attacks: node-based and edge-based. In this paper, we mainly study the
node-based attacks and group such attacks into three types: the largest degree
node-based attacks, the highest betweenness node-based attacks and random attacks.

(1) The largest degree node-based attacks: starting from the initial state, to delete
the node with the largest degree in each step and re-calculate the network status. In
this way, nodes are deleted one by one.

(2) The highest betweenness node-based attacks: starting from the initial state, to
delete the node with the highest betweenness in each step and re-calculate the network
status. Similar to Rule (1), nodes are also deleted one by one.

(3) Random attacks: starting from the initial state, to delete a node in the network
randomly in each step and re-calculate the network status. Just as in Rule (1) and Rule
(2), nodes are deleted one by one.

3.2 Evaluation model
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We study the urban rail transit networks from two sides: topological vulnerability
and functional vulnerability.

Topological Vulnerability is defined as the network susceptibility to incidents
that could result in a reduction in structure connectivity. Several parameters could be
applied to depict the overall efficiency and connectivity of the network, such as
Connectivity Factor, Topological Efficiency and the Average Shortest Path. Among
these parameters, we use Topological Efficiency to evaluate network topological
vulnerability.

As defined in Equation (2.6), Topological Efficiency E = ;Zv.v.evi. It
N(N-1) v¥j lij

depicts the overall connectivity of the network. With a higher value of E, we could
have a more efficient network information transmission.

When node v; is attacked and removed from the network, the value of E would
change as well. Therefore, we define the topological efficiency of v; [E(v;)] as:

E(v) = E(0) —E(v';) (3.1)

where E(O) is the original topological efficiency of the network and E(v’;) is the
network topological efficiency after v; being attacked. The higher value of E(vj) is, the
greater impact v; would have on network efficiency. In another word, v; is more
critical to topological reliability.

Functional Vulnerability is defined as the network susceptibility to incidents that
could result in a reduction in transport ability. We suppose that each node in the
network possesses the initial functional ability of 1. If a node is removed from the
network (attacked or isolated), its functional ability reduced to 0. Based on this
definition, we could therefore use network size to evaluate network functional
vulnerability.

When network is attacked, the attacked node would be removed from the
network. Meanwhile, it would cause some isolated nodes in the network, which would
also be deleted. Therefore, we define Network Size as the total number of remaining
nodes in the network.

To better analyze network transport ability, we also define and use the concept of
Origin-Destination (OD) in urban rail transit networks. When node v; is attacked,
several ODs in the network would become unconnected. Therefore, we define OD
Susceptibility of v; [S(vi)] as:

_ 4 Is@")
S(v;)) =1 SO (3.2)

where [S(O)| is the number of OD in the original network and [S(v’j)| is the
number of remaining connected OD after v; being attacked. It reveals the importance
of node v; in maintaining network functional properties.

Some previous literatures also use Largest Connected Cluster (LCC) ! to
evaluate functional vulnerability of urban rail transit networks. LCC is defined as the
network size of the largest sub-network after the network being attacked. However,
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this parameter is not suitable to evaluate urban rail transit networks as trains could
still operate in each sub-network even if the network is attacked and divided into
several isolated sub-networks.

4 Vulnerability Analysis of Shanghai Metro

4.1 Basic network information

Figure4-1 Shanghai Metro Route Map

In this section, Shanghai Metro is studied based on the above vulnerability model.
Figure4-1 presents the route map of Shanghai Metro. As can be seen from the figure,
Shanghai Metro is a very complicated transport system with 14 lines (Linel-13 and
Linel6) in operation. The network topology is constructed and basic parameter
information is obtained with C++ and Matlab. Table4-1 presents the summary of
Shanghai Metro topological characteristics. Currently, there are 287 nodes and 317
edges in the network. The average degree is 2.2, which is at the average level among
urban rail transit networks in major cities around the world. Figure4-2 presents the
degree distribution of Shanghai Metro network. The nodes with degree 2 take up
approximately 80% of the total number while the nodes with degree 4 take up
approximately 9%. There is only 1 node with degree 8 and 2 nodes with degree 6 and
5 respectively, which means that the nodes with large degree are very few in

quantities.
Table4-1 Characteristics Index of Shanghai Metro

Characteristics Index Value
Node No. 287
Edge No. 317
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Average Degree
Connectivity Factor

2.2
1.105

80.14%

Number

Node Degree

0.35%

Figure4-2 Degree Distribution of Shanghai Metro

Table4-2 presents the top 10 important stations of Shanghai Metro based on node
degree and node betweenness respectively. Century Avenue is the node with the
largest degree of 8. It means that the station is connected with other 8 stations in the
network. Xujiahui possesses the largest node betweenness of 23624. It means that
there are overall 23624 shortest paths in the network go through Xujiahui station. It is
also worth noticing that the two rankings are quite different from each other. Some
stations, such as Caoyang Road, Zhenping Road and Jiangsu Road, which are of node

degree 4, possess higher node betweenness than Century Avenue and People’s Square.
Table4-2 Top10 Important Stations of Shanghai Metro

Station Ranking based on Node Degree

Station Ranking based on Node Betweenness

No. D; Station No. B Station
1 8 Century Avenue 1 23624 Xujiahui
2 6 Xujiahui 2 20104 Caoyang Road
3 6 People's Square 3 18232 Zhenping Road
4 5 Oriental Sports Center 4 17306 Jiangsu Road
5 5 Yishan Road 5 17264 Century Avenue
6 4 South Shaanxi Road 6 17222 Shanghai Railway Station
7 4 Changshu Road 7 16448 Jiaotong University
8 4 Shanghai Railway Station 8 15218 Hailun Road
9 4 Shanghai Indoor Stadium 9 14804 People's Square
10 4 Zhaojiabang Road 10 14120 Baoshan Road

4.2 Topological vulnerability analysis of Shanghai Metro

Figure4-3 depicts the changes in network efficiency of Shanghai Metro under
malicious attacks. The original network efficiency is only 0.008. It means that the
overall connectivity of the network is poor. As can be seen from the figure, random
attacks cause the minimal losses in network efficiency among the three malicious

10
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attacks. When 10% of nodes (29 nodes) are attacked and removed from the network,
the network efficiency decrease by only 14%. However, both of the largest degree
node-based attacks and the highest betweenness node-based attacks cause great losses
in network efficiency. When 10% of nodes are deleted from the network, the network
efficiencies decrease by 37% and 34% respectively. There is little difference in these
two ways of attacks. It means that stations with high node betweenness are of same
influence on network efficiency as stations with large node degree. These stations
may not be important in common sense, but they have great impact on maintaining
network connectivity. This figure also illustrates that urban rail transit networks are
vulnerable to the largest degree node-based attacks and the highest betweenness
node-based attacks, but it is quite robust to random attacks.

Largest degree node-based attack
Highest betweenness node-based attack
4+ — Random attack

0.008

0.007 +

0.006

0.005

0.004 |-

0.003 +

Network efficiency

0.002 +

0.001 +

0.000 . . L . L . L .
0.0 0.1 02 03 0.4 05

Fraction of removed nodes

Figure4-3 Network Efficiency of Shanghai Metro under Malicious Attacks

4.3 Functional vulnerability analysis of Shanghai Metro

Figure4-4 depicts the changes in network size of Shanghai Metro under
malicious attacks. The largest degree node-based attacks cause the maximum losses in
network size among the three malicious attacks. When 20% of nodes (58 nodes) are
attacked and removed from the network, the network size decrease by 39%. Apart
from the 58 attacked nodes, it also causes 54 isolated nodes in the network. This
figure illustrates that the stations with large node degree are important to maintaining
network transport ability. These stations are also critical to other stations in the
network.
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Largest degree node-based attack
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Figure4-4 Network Size of Shanghai Metro under Malicious Attacks
Figure4-5 depicts the changes in connected OD ratio of Shanghai Metro under
malicious attacks. As can be seen from the figure, malicious attacks have a great
impact on OD connectivity. When the top 7 stations with the highest betweenness are
attacked, the connected OD ratio decreases to only 29%. Moreover, when 10% of
nodes (29 nodes) are attacked and removed from the network, the connected OD ratio
decrease to approximately 2% under both of the largest degree node-based attacks and
the highest betweenness node-based attacks. Only 760 OD pairs are still connected
out of 41041 original pairs and the network is paralyzed. This figure illustrates that
OD connectivity is vulnerable to malicious attacks.
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Figure4-5 Connected OD Ratio of Shanghai Metro under Malicious Attacks

5 Comparisons of Different Urban Rail Transit Networks
5.1 Basic network information

To better understand and explore reliable network geometry, we would study and
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compare the vulnerabilities of different urban rail transit networks, namely Shanghai
Metro, Taibei Metro and Tokyo Metro in this section. Figure5-1 and Figure5-2
presents the route map of Taibei Metro and Tokyo Metro respectively. As can be seen
from these two figures, Taibei Metro has a simple structure while Tokyo Metro is a
super complicated system.
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Figure5-1 Taibei Metro Route Map
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Figure5-2 Tokyo Metro Route Map
Table5-1 presents the comparison of basic topological characteristics of the three
metros. Shanghai Metro possesses the maximum number of nodes while Taibei Metro
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has only 101 nodes in total. However, Tokyo Metro possesses the highest average
degree and connectivity factor than the other two. It means that Tokyo Metro enjoys
the best overall network connectivity. Figure5-3 presents the degree distributions of
the three metros. Different from Shanghai Metro and Taibei Metro, the nodes with
degree 2 take up only 70% of the total number in Tokyo Metro. Instead, there are
more nodes with large degree in Tokyo Metro with 5 nodes of degree 6 and 10 nodes

of degree 5. It reveals the better connectivity of Tokyo Metro.
Table5-1 Characteristics Index of the Three Metros

Characteristics Index Shanghai Tokyo Taibei
Node No. 287 204 101
Edge No. 317 256 105
Average Degree 2.2 2.5 2.1
Connectivity Factor 1.105 1.255 1.040
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Figure5-3 Degree Distributions of the Three Metros

5.2 Topological vulnerability analysis

Figure5-4, Figure5-5 and Figure5-6 depict the changes in network efficiency of
the three metros under malicious attacks. As can be seen from Figure5-4, under the
largest degree node-based attacks, when less than 10% of the nodes are attacked and
removed from the networks, the changes in network efficiencies are similar to Tokyo
Metro and Shanghai Metro. It means that the critical nodes (nodes with large degree)
in these two metros possess similar robustness to malicious attacks. However, when
20% of the nodes (57 nodes in Shanghai Metro and 41 nodes in Tokyo Metro) are
attacked and removed from the networks, the network efficiencies decrease by 55%
and 60% respectively for Shanghai Metro and Tokyo Metro. The attacks in Tokyo
metro cause a greater loss in network efficiency. In another word, these less critical
nodes (nodes with degree 2 or 3) in Tokyo Metro account for higher network
efficiencies than those in Shanghai Metro. It reveals that Tokyo Metro is not only
robust for critical-station attacks, but also more economical in constructing other less
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critical stations. Similar conclusions could be reached from Figure5-5 and Figure5-6
when Tokyo Metro and Shanghai Metro are compared. Taibei Metro is not taken into
considerations here as generally speaking, network efficiency is relevant with total
node number in the network and makes it hard to compare a simple network (Taibei
Metro) with complicated ones (Shanghai Metro and Tokyo Metro).
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Figure5-4 Network Efficiency under the Largest Degree Node-based Attacks
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Figure5-5 Network Efficiency under the Highest Betweenness Node-based Attacks
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Figure5-6 Network Efficiency under Random Attacks

5.3 Functional vulnerability analysis

Figure5-7, Figure5-8 and Figure5-9 depict the changes in network size of the
three metros under malicious attacks. For all the three metros, the largest degree
node-based attacks cause the maximum losses in network size among the three
malicious attacks. Therefore, we put our emphasis on the study of the largest degree
node-based attacks. As can be seen from Figure5-7, when less than 10% of the nodes
are attacked and removed from the networks, the changes in network sizes are similar
to the three metros. However, when more than 10% of the nodes are attacked, the
changes in network size of Tokyo Metro are obviously smaller than the changes in
Shanghai Metro and Taibei Metro. It means that the attacks cause fewer ratios of
isolated nodes in Tokyo Metro than the other two. In another word, Tokyo Metro
possesses the best transport ability under malicious attacks among the three metros.
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Figure5-7 Network Size under the Largest Degree Node-based Attacks
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Figure5-8 Network Size under the Highest Betweenness Node-based Attacks
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Figure5-9 Network Size under Random Attacks

Figure5-10, Figure5-11 and Figure5-12 depict the changes in connected OD ratio
of the three metros under malicious attacks. Different from Shanghai Metro and
Taibei Metro, Tokyo Metro is much more robust to the largest degree node-based
attacks. When 8% of nodes (16 nodes) are attacked and removed from the network,
there are still 45% of OD pairs connected in Tokyo Metro. 9345 OD pairs are
connected out of 20706 original pairs. The ratio is much higher than that of Shanghai
Metro and Taibei Metro. However, the OD connectivity of Tokyo Metro is as
vulnerable as that of Shanghai Metro and Taibei Metro under the highest betweenness
node-based attacks. When 8% of nodes (16 nodes) are attacked and removed from the
network, the connected OD ratio decrease to only 9% in Tokyo Metro. It reveals that
stations with high node betweenness are more critical to OD connectivity than stations
with large degree, and therefore need to be protected.
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Figure5-10 Connected OD Ratio under the Largest Degree Node-based Attacks
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Figure5-11 Connected OD Ratio under the Highest Betweenness Node-based Attacks
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Figure5-12 Connected OD Ratio under Random Attacks
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6 Conclusions

Based on the above analysis, we could reach the following conclusions:

(1) Urban rail transit network is quite robust to random attacks, but it is
vulnerable to the largest degree node-based attacks and the highest betweenness
node-based attacks.

(2) Stations with high node betweenness are of same influence on network
efficiency as stations with large node degree. These stations may not be important in
common sense, but they have great impact on maintaining network connectivity.

(3) Stations with large node degree are more important to maintaining network
size while stations with high node betweenness are more critical to maintaining OD
connectivity.

(4) Tokyo Metro is not only robust for critical-station attacks, but also more
economical in constructing other less critical stations. It possesses the best transport
ability under malicious attacks among the three metros and is much more robust to the
largest degree node-based attacks in OD connectivity.

These conclusions can provide both theoretical significance and practical
significance to the study of rail transit networks. Critical stations could be identified
in the network and be better protected. Tokyo Metro could be taken as a model for the
construction of urban rail transit networks around the world. In the meanwhile of
guaranteeing network reliability, it also provides ideas on reducing construction costs.

However, there are still some problems existing in current vulnerability model.
To traffic users (metro passengers), interchange times is an important factor which
would affect their route choices, but the above mentioned evaluation indexes are hard
to depict transfer efficiency. In the next step of our research, the time required to
transfer as well as the passengers psychological habits would be quantified in the
model. As large passenger flow would add pressure to the network system and
increase the probability of breakdown, traffic volume would also be quantified in the
model.
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